Filia tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

• Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
• Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1. \(30 \cdot \left(\frac{1}{3} - 0,3 \right) = 30 \cdot \left(\frac{1}{3} - \frac{3}{10} \right) = \frac{30 \cdot (10 - 9)}{30} = \)
 \(= 30 \cdot \frac{1}{30} = 1\)
 3p

2. \(x_1 \cdot x_2 = a\)
 \(a - 1 < 0 \iff a \in (-\infty, 1)\)
 3p

3. \(3^{x+1} = 3^{2x} \iff x + 1 = 2x\)
 \(x = 1\)
 3p

4. Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile
 Sunt 9 numere naturale de două cifre care au cifra unității egală cu 3, deci sunt 9 cazuri favorabile
 \(p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}\)
 1p

5. \(AO = \sqrt{2}, OB = 4\sqrt{2}\)
 \(AB = 5\sqrt{2} \Rightarrow AB = AO + OB\), deci punctele \(A, O\) și \(B\) sunt coliniare
 2p

6. \(\sin^2 x + 2 \sin x \cos x + \cos^2 x - 2 \sin x \cos x = \)
 \(= \sin^2 x + \cos^2 x = 1\), pentru orice număr real \(x\)
 3p

SUBIECTUL al II-lea (30 de puncte)

1.a) \(\det A = \begin{vmatrix} 1 & -5 \\ 2 & 6 \end{vmatrix} = 1 \cdot 6 - 2 \cdot (-5) = 16 = \)
 \(= 6 + 10 = 16\)
 3p

b) \(\begin{vmatrix} 1 & -5 \\ 2 & 6 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} 16 & 0 \\ 0 & 16 \end{vmatrix} = \begin{vmatrix} a & 0 \\ 0 & a \end{vmatrix} \)
 \(a = 16\)
 3p

c) \(\det \begin{vmatrix} xA + \frac{1}{x} B \\ 2x - \frac{2}{x} \end{vmatrix} = \begin{vmatrix} x + \frac{6}{x} & -5x + \frac{5}{x} \\ 2x - \frac{2}{x} & 6x + \frac{1}{x} \end{vmatrix} = 16x^2 + \frac{16}{x^2} + 17\)
 \(16x^2 + \frac{16}{x^2} + 17 \geq 49 \iff 16x^2 + \frac{16}{x^2} \geq 32 \iff 16 \left(x - \frac{1}{x}\right)^2 \geq 0\), relație adevărată pentru orice număr real nenul \(x\)
 3p

Probă scrisă la matematică M_tehnologic
Barem de evaluare și de notare
Filia tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale
2.a) \[(-2) \circ (-2) = 5 \cdot (-2) \cdot (-2) + 15(-2 + (-2)) + 42 = \]
\[= 20 - 60 + 42 = 2 \] 3p

b) \[x \circ y = 5xy + 15x + 15y + 45 - 3 = \]
\[= 5x(y + 3) + 15(y + 3) - 3 = 5(x + 3)(y + 3) - 3 \], pentru orice numere reale \(x \) și \(y \) 2p

c) \[(x - 3) \circ (x - 3) = 5x^2 - 3 \], \[(x - 3) \circ (x - 3) \circ (x - 3) = 25x^3 - 3 \]
\[25x^3 - 3 = 197 \Leftrightarrow x = 2 \] 2p

SUBIECTUL al III-lea (30 de puncte)

1.a) \[f'(x) = 1 \cdot e^x + (x - 2)e^x = \]
\[= e^x (1 + x - 2) = (x - 1)e^x, \ x \in \mathbb{R} \] 3p

b) \[\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x - 2}{e^x} = \]
\[= \lim_{x \to \infty} \frac{1}{e^x} = 0 \] 3p

c) \[f''(x) \leq 0 \], pentru orice \(x \in (-\infty, 1] \Rightarrow f \) este descrescătoare pe \((-\infty, 1]\), \[f''(x) \geq 0 \], pentru orice \(x \in [1, 2] \Rightarrow f \) este crescătoare pe \([1, 2] \]
\[\lim_{x \to \infty} f(x) = 0, \ f(1) = -e \ și \ f(2) = 0 \], deci \(-e \leq f(x) \leq 0 \), pentru orice \(x \in (-\infty, 2] \) 2p

2.a) \[\int_{-1}^{1} (f(x) - 1)dx = \int_{-1}^{1} 3x^2dx = x^3 \bigg|_{-1}^{1} = \]
\[= 1 - (-1) = 2 \] 3p

b) \(F : \mathbb{R} \to \mathbb{R} \) este o primitivă a lui \(f \Rightarrow F'(x) = f(x) = 3x^2 + 1, \ x \in \mathbb{R} \)
\(F'(x) > 0 \), pentru orice număr real \(x \), deci \(F \) este crescătoare pe \(\mathbb{R} \) 2p

c) \[\int_{1}^{e} f(x) \ln x dx = \int_{1}^{e} (3x^2 + 1) \ln x dx = \int_{1}^{e} (3x^2 + x) \ln x dx - \int_{1}^{e} (x^2 + 1)dx = \]
\[= e^3 + e - \left(\frac{e^3}{3} + x \right) \bigg|_{1}^{e} = e^3 + e - \left(\frac{e^3}{3} + e \right) + \left(\frac{1^3}{3} + 1 \right) = 2e^3 + 4 \] 3p