Examenul național de bacalaureat 2021
Proba E. c)
Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Testul 7

Filiera teoretică, profilul real, specializarea matematică-informatică
Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1. \(2n + 1 < 10 \iff n < \frac{9}{2}\)
 Cum \(n\) este număr natural, obținem că mulțimea \(M\) are 5 elemente
 \(2p\)

2. \(\Delta = 100 - 4m, \ y'_f = m - 25\)
 Vârful parabolei asociate funcției \(f\) este situat pe axa \(Ox \iff y'_f = 0 \iff m = 25\)
 \(2p\)

3. \(\sqrt{x - 5} = 7 - x \Rightarrow x - 5 = (7 - x)^2\), deci \(x^2 - 15x + 54 = 0\)
 \(x = 6\), care convine; \(x = 9\), care nu convine
 \(3p\)

4. Mușimile numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile
 Sunt \(9 \cdot 10 \cdot 8 = 720\) de numere naturale de trei cifre care nu sunt multipli de 5, deci sunt 720 de cazuri favorabile
 \(p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{720}{900} = \frac{4}{5}\)
 \(2p\)

5. \(\overline{AB} + \overline{BC} + \overline{BC} = 0 \iff \overline{AC} + \overline{BC} = 0\), deci punctul \(C\) este mijlocul segmentului \(AB\)
 Coordonatele punctului \(C\) sunt \(x_C = 1, y_C = \frac{7}{2}\)
 \(3p\)

6. \(A_{ABC} = \frac{\overline{AB} \cdot AC \cdot \sin A}{2} \Rightarrow 6 = \frac{4 \cdot 5 \cdot \sin A}{2} \Rightarrow \sin A = \frac{3}{5}\)
 \(\cos^2 A = 1 - \sin^2 A = \frac{16}{25}\) și, cum unghiul \(A\) este ascuțit, obținem \(\cos A = \frac{4}{5}\)
 \(2p\)

SUBIECTUL al II-lea (30 de puncte)

1.a) \(\det(A(a)) = \begin{vmatrix} 1 & a+1 & a \\ 1 & a+1 & a \\ 2 & a & 1 \end{vmatrix} = 1 + a^2 + 2(a+1)^2 - 2a - a(a+1) - (a+1) = 2p\)

b) \(A(0) = \begin{vmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{vmatrix}, A(a) \cdot A(0) = \begin{vmatrix} 3a^2+2 & a+2 & 2a+1 \\ a+2 & a+2 & 2a+2 \\ a+1 & 2a+2 & 2a+2 \end{vmatrix}, A(0) \cdot A(a) = \begin{vmatrix} 2 & a+2 & 2a+1 \\ 2a+2 & a+2 & 2a+1 \\ 2a+1 & 2a+2 & 2a+2 \end{vmatrix}\)
 pentru orice număr real \(a\)
 \(3p\)

2. Sistemul este compatibil determinat și are soluția \((x_0, y_0, z_0)\), cu \(x_0 = 1, y_0 = 2\) și \(z_0 = 4\)
 Cum \(x_0z_0 = 4 = y_0^2\), obținem că \(x_0, y_0\) și \(z_0\) sunt termeni consecutivi ai unei progresii geometrice
 \(3p\)

Probă scrisă la matematică M_mate-info
Testul 7
Barem de evaluare și de notare
Filiera teoretică, profilul real, specializarea matematică-informatică
Filiera vocațională, profilul militar, specializarea matematică-informatică
Pagina 1 din 2
2.a)
\[x \cdot 0 = \frac{2(x + 0)}{x \cdot 0 + 2} = \frac{2x}{2} = x, \text{ pentru orice } x \in M \]
\[2p \]

b)
\[x \cdot y - 2 = \frac{2(x + y)}{xy + 2} - 2 = \frac{2x + 2y - 2xy - 4}{xy + 2} = -2 \cdot \frac{xy - x - y + 2}{xy + 2} = -2 \cdot \frac{(x-1)(y-1) + 1}{xy + 2} < 0, \text{ pentru orice } x, y \in [1, +\infty) \Rightarrow x \cdot y < 2, \text{ pentru orice } x, y \in [1, +\infty) \]
\[3p \]

c) Cum \(m \) și \(n \) sunt numere naturale nenule, obținem \(0 < m \cdot n < 2 \) și, cum \(m \cdot n \) este număr natural, obținem \(m \cdot n = 1 \)
\[\frac{2(m + n)}{mn + 2} = 1 \iff mn - 2m - 2n + 2 = 0 \iff (m - 2)(n - 2) = 2 \] și, cum \(m \) și \(n \) sunt numere naturale nenule, obținem perechile \((3,4)\) și \((4,3)\)
\[2p \]

SUBIECTUL al III-lea (30 de puncte)

1.a) \[f'(x) = e^x \left(x^2 - 4x + 5\right) + e^x \left(2x - 4\right) = e^x \left(x^2 - 2x + 1\right) = e^x (x - 1)^2, \quad x \in \mathbb{R} \]
\[3p \]

\[= e^x \left(x^2 - 2x + 1\right) = e^x (x - 1)^2, \quad x \in \mathbb{R} \]
\[2p \]

b) \[\lim_{x \to +\infty} f'(-x) = \lim_{x \to +\infty} e^{-x} \left(x^2 + 4x + 5\right) = \lim_{x \to +\infty} \frac{x^2 + 4x + 5}{e^x} = \lim_{x \to +\infty} \frac{2x + 4}{e^x} = \frac{2}{e^x} = 0 \]
\[2p \]

\[= \lim_{x \to +\infty} \frac{2x + 4}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0 \]
\[3p \]

C) \[f'(x) = 0 \iff x = 1, \quad f'(x) > 0 \text{ pentru orice } x \in (-\infty, 1) \Rightarrow f \text{ este strict crescătoare pe } (-\infty, 1) \]
și \[f'(x) > 0 \text{ pentru orice } x \in (1, +\infty) \Rightarrow f \text{ este strict crescătoare pe } (1, +\infty) \]
Cum funcția \(f \) este continuă în \(x = 1 \), obținem că \(f \) este strict crescătoare pe \(\mathbb{R} \Rightarrow f \) este injectivă, deci graficul funcției \(f \) intersectează orice paralelă la \(Ox \) în cel mult un punct
\[2p \]

2.a) \[\int_0^1 \left(4x^3 + 1\right) dx = \left(x^4 + x\right) \bigg|_0^1 = 1 + 1 = 2 \]
\[3p \]

\[= \int_0^1 \left(4x^3 + 1\right) dx = \left(x^4 + x\right) \bigg|_0^1 = 1 + 1 = 2 \]
\[2p \]

b) \[\int_0^1 x^2 \left(f(x)\right)^3 dx = \int_0^1 x^2 \left(4x^3 + 1\right)^3 dx = \frac{1}{12} \int_0^1 \left(4x^3 + 1\right)^3 \left(4x^3 + 1\right) dx = \frac{1}{12} \cdot \left(\frac{4x^3 + 1}{4}\right)^4 \bigg|_0^1 = \frac{5^4 - 1}{48} = 13 \]
\[3p \]

\[= \frac{5^4 - 1}{48} = 13 \]
\[2p \]

c) \[4t^3 + 1 \geq 5, \quad \text{pentru orice } t \in [1, +\infty) \Rightarrow \int_1^x \ln(f(t)) dt = \int_1^x \ln(4t^3 + 1) dt \geq \int_1^x \ln 5 dt = (x - 1) \ln 5 \]
\[\text{pentru orice } x \in [1, +\infty) \]
\[\text{Cum } \lim_{x \to +\infty} (x - 1) \ln 5 = +\infty, \quad \text{obținem } \lim_{x \to +\infty} \int_1^x \ln(f(t)) dt = +\infty \]
\[3p \]

2p